

BENFIELDSIDE PRIMARY

ARITHMETIC GUIDANCE
DOCUMENT
NOVEMBER 2022

BODMAS

The order is: Brackets - Division - Multiplication - Addition - Subtraction (Remember DM and AS are equally important)

Examples:

$$
6+\underline{4 \times 3}=18
$$

$$
6+12
$$

$24-8 \div 2=20$
$24-4=20$

MULTIPLYING AND DIVIDING BY MULTIPLES OF 10

Remember to apply your knowledge of place value
$35 \times 2 \underline{0}=35 \times 2 \times 1 \underline{0}=700$
$480 \emptyset \div 4 \underline{Q}=480 \div 4=48 \div 4 \times 1 \underline{0}=12 \underline{O}$
$60 \times 20 \times 20=\frac{6 \times 2 \times 2}{\uparrow} \times 1,000=24,000$
24

MULTIPLYING AND DIVIDING BY 10, 100 or 1000

Remember to apply your rules of place value

$3.5 \times 100=350$

tips: $3 \times 100=300$ so answer must be close to 300
digits at the start go 3 then 5 , so answer must go 3 then 5
$3.5 \times 1 \underline{00}$, 2 zeroes so you move the digits two columns and put zeroes in the empty gaps

3.5 O

ADDING AND SUBTRACTING FRACTIONS

RHYME: ADDING FRACTIONS DON'T BE LAME
make sure the denominators are the same
IF YOU DON'T WANT YOUR WORK TO HAVE A WHIFFY SCENT make the fractions EquIVallent

1) If the denominator (bottom value) is the same, you just add or subtract the numerator.
$\underline{3}+\underline{4}=\underline{7}$
10
10
10
$\underline{7}-\underline{3}=\underline{4}$
$5 \quad 5 \quad 5$
2) If the denominators aren't the same, you have to find a common denominator and make equivalent fractions.

$\frac{2}{2}$	$+\quad \underline{7}$
5	10

$\underline{2}+\underline{7}$ becomes $\underline{4}+\underline{7}=\underline{11}=1 \frac{1}{10}$
$\begin{array}{lllll}5 & 10 & 10 & 10 & 10\end{array}$

3) If the question involves adding mixed numbers (whole numbers and a fraction) add the whole number then the fraction

$$
\begin{aligned}
& 2 \frac{2}{5}+3 \frac{1}{3}=5 \frac{11}{15} \\
& 2+3=5 \frac{6}{15}+\frac{5}{15}=\frac{11}{15} \\
& \frac{2}{5}=\frac{6}{15} \quad \frac{1}{3}=\frac{5}{15}
\end{aligned}
$$

4) If the question involves subtracting mixed numbers, Start by subtracting the fraction and exchange from the whole if you need to

$$
\begin{aligned}
& 28 \frac{5}{9}-1 \frac{2}{3}= 1 \frac{8}{9} \\
& \frac{5}{9}-\frac{2}{3}= \begin{array}{c}
\text { (make equivalent fractions with the } \\
\text { same denominator) }
\end{array} \\
& \frac{5}{9}-\frac{6}{9}= \begin{array}{c}
\text { (would give a negative so exchange } \\
\text { by adding on } 1-9 / 9 \text {) }
\end{array} \\
& \frac{14}{9}-\frac{6}{9}=\frac{8}{9} \\
& 2-1=1
\end{aligned}
$$

MULTIPLYING FRACTIONS

RHYME: MULTIPLYING FRACTIONS NOT A PROBLEM TOP X TOP OVER BOTTOM \times BOTTOM
 $\underline{3} \times \underline{2}=\underline{6}$
 $5 \quad 3 \quad 15$

If a question involves a combination of improper fractions and mixed numbers, change them both into fractions then do as above.
$21 / 2 \times \frac{5}{3}=\underline{5} \times \underline{5}=\underline{25}$
2
3
6

If multiplying fractions by whole numbers, remember it is just the same as getting the fraction of the number

$$
\begin{gathered}
\frac{2}{3} \times 120=\frac{2}{3} \text { of } 120=80 \\
120 \div 3 \times 2
\end{gathered}
$$

DIVIDING FRACTIONS

$$
\frac{8}{4} \div 4=\frac{2}{4}
$$

look to see if the numerator is a multiple of the whole number you're dividing by
e.g. $8 \div 4=2$, so $\quad \frac{8}{4} \div 4=\frac{2}{4}$

RHYME: DIVIDING FRACTIONS IS AS EASY AS PIE FLIP THE SECOND FRACTION THEN MULTIPLY
$\frac{7}{8} \div 3=\frac{7}{8} \times \frac{1}{2}=\frac{7}{3}$

Remember every whole number has 1 as a denominator

CALCULATING PERCENTAGES

You only have to think about place value and remember percentage is parts of a 100

To get 10% you divide by 10
To get 1% you divide by 100
To get 25% you divide by 4 (half and half again)
To get 50% you divide by 2

1) $21 \% \times 230=48.3$
10%-> $230 \div 10=23$
20%-> $23 \times 2=46$ (double 10\%)
1%-> $230 \div 100=2.3$
21%-> $20 \%+1 \%=46+2.3=48.3$
2) 99% of $350=346.5$
$100 \%-1 \%=99 \% \quad 350-3.5=346.5$
100%-> the starting value
1%-> $350 \div 100=3.5$
